Parametric Equations

Consider the ellipse with rectangular equation

    \[\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\]

If x=a\cos \theta and y=b\sin \theta, then

    \[\frac{x^2}{a^2}+\frac{y^2}{b^2}= \frac{(a\cos \theta)^2}{a^2}+\frac{(b\sin \theta)^2}{b^2}=\cos^2\theta+\sin^2\theta=1\]

and hence (x,y) lies on the ellipse.

The parametric equations of the ellipse are given by x = a\cos \theta, y = b \sin\theta.

Ellipse4